Deployable Solar Energy Generators for Deep Space Cubesats, Phase

Completed Technology Project (2014 - 2014)

Project Introduction

Cubesats require highly compact technologies to maximize their effectiveness. As cubesats are expected to be low-cost and, relative to the space industry, mass produced, their technologies should be simple to manufacture, yet achieve aerospace quality standards. This proposal aims to describe a novel high-efficiency (i.e., comparable to solar panels) fabricated power supply for cubesats and other small satellites that has marked advantages over solar photovoltaic cells. Nanohmics Inc. proposes to develop and test a compact, high efficiency solar thermoelectric generator. The technology is amenable to mass manufacturing and is based on recent development successes at Nanohmics: thermoelectrics development and coatings to maximize emissivity. On a space vehicle, the energy generator would be deployable in a number of ways including a folding fan-like unpacking or other compact designs.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Nanohmics, Inc.	Lead Organization	Industry	Austin, Texas
• Ames Research Center(ARC)	Supporting Organization	NASA Center	Moffett Field, California

Deployable solar energy generators for deep space cubesats Project Image

Table of Contents

Project Introduction Primary U.S. Work Locations	1
and Key Partners	1
Project Transitions	2
_	2
Images	2
Organizational Responsibility	
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Deployable Solar Energy Generators for Deep Space Cubesats, Phase

Completed Technology Project (2014 - 2014)

Primary U.S. Work Locations		
California	Texas	

Project Transitions

0

June 2014: Project Start

December 2014: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/137431)

Images

Project Image

e/130802)

Deployable solar energy generators for deep space cubesats Project Image (https://techport.nasa.gov/imag

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Nanohmics, Inc.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Steve Savoy

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Deployable Solar Energy Generators for Deep Space Cubesats, Phase

Completed Technology Project (2014 - 2014)

Technology Areas

Primary:

- TX03 Aerospace Power and Energy Storage
 - └─ TX03.1 Power Generation and Energy Conversion
 └─ TX03.1.1 Photovoltaic

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

